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Phase transitions in heteropolymers with “secondary structure”
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We study a model of a random heteropolymer with “secondary structure” at the level of mean
field theory. The randomness in the polymer sequence is represented by a set of quenched disorder
variables that describe the monomer-monomer interactions. The secondary structure is represented
by a set of Ising-like thermodynamic variables that describe internal states of the monomers. The
interactions between the monomers depend on the quenched disorder variables, on the thermody-
namic, secondary-structure state variables, and also on the polymer configuration. We find that the
system can exist in different phases that depend on the heterogeneity and average strength of the
interactions, and on the polymer flexibility. At high temperatures the polymer interconverts freely
between configurations without a stable secondary structure. At intermediate temperatures there
is a transition to phases with one or two (coexisting) stable secondary-structure motifs and with a
large number of thermodynamically important spatial configurations. At low enough temperatures
(determined by the polymer flexibility) the polymer undergoes a freezing transition into phases with
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a unique spatial configuration and one or two stable secondary-structure motifs.

PACS number(s): 61.41.4¢, 87.15.Da, 64.60.Cn, 64.60.Kw

I. INTRODUCTION

The protein folding problem is one of the most impor-
tant questions in the field of molecular biology [1]. This
problem consists in determining the factors that allow
proteins to have a unique stable structure, and the factors
that allow them to reach this structure without scanning
the astronomically large number of possible conforma-
tions (the so called Levinthal paradoz [2]). The first issue
can be investigated with methods of equilibrium statis-
tical mechanics, whereas the second requires a kinetic
approach [3,4].

In recent years there has been substantial progress
from a theoretical point of view, in elucidating the prop-
erties, that are sufficient to provide proteins with a
unique structure. The progress was accomplished by
modeling the proteins as random heteropolymers [5-8).
The properties of the random heteropolymers were stud-
ied using concepts from the theory of spin glasses [9].

The basic result of this approach is that these systems
have an energy spectrum similar to the random energy
model (REM) [10]. Each energy of the spectrum is as-
sociated with a particular conformation. The low energy
part of the spectrum is discrete and corresponds to a
few [of order O(1)] conformations that are completely
different from each other. These few conformations be-
come thermodynamically dominant below a temperature
T:. that depends on the heterogeneity of the interactions
and the polymer flexibility. Thus crossing this tempera-
ture signals the freezing transition to a particular native
structure.

The structural heterogeneity was introduced in [7,8]
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by a set of independent random variables B;; that de-
scribed the monomer-monomer interaction.. In a set of
other works the two-letter heteropolymer problem for
a sequence model was also solved [11]. In this model
the monomers were assigned quenched random variables
o; (= £1) and the monomer-monomer interaction for
monomers in contact was equal to 0;0;. The assumption
of complete randomness in the polymer sequence (equiv-
alently in the monomer-monomer interactions) simplifies
the problem mathematically. In real proteins though it
is rather certain that sequences are not completely ran-
dom, but that they have been designed through evolution
to satisfy certain structural and functional needs. This
nonrandom character of sequences is obvious since (for
example) there are many instances of periodic arrange-
ments of polar-nonpolar residues in the protein primary
sequence [12] that enhance the protein stability by creat-
ing a hydrophobic core and a hydrophilic exterior. How-
ever, since the nonrandom character of the protein pri-
mary sequences is expected to increase the stability and
facilitate the kinetics of folding of proteins, the deter-
mination of the factors that enable folding to a unique
structure in the random models actually solves a more
stringent problem. Thus to reveal the necessary con-
ditions for folding the modeling of proteins as random
heteropolymers is satisfactory.

Even though these models are successful in reproduc-
ing protein characteristics such as the stable native struc-
ture, they constitute simplified representations that miss
various features of the actual protein architecture. More
specifically, these systems treat proteins as “beads on a
string,” where each monomer is a sphere that interacts
with the other monomers via short-range forces. One im-
portant feature of proteins not represented by the models
is their secondary structure. The majority of residues in
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proteins (90%) exist in one of three secondary-structure
motifs: 38% o-helical, 20% (B-sheet, and 32% reverse
turns [1]. The importance of secondary-structure for-
mation for the folding and the stability of proteins has
not been fully elucidated. It has been argued [13] that
secondary-structure elements are involved in early stages
of folding. Alternatively, it has been claimed on the basis
of studies of short sequences in d = 2 lattices [14] that
compactness induces formation of secondary structure,
and that hydrogen bonding or amino acid propensities for
a specific secondary structural motif are not needed. Var-
ious secondary-structure prediction schemes have been
developed [15-17]. These schemes assume that the sec-
ondary structure is determined by the local sequence of
short segments on the polypeptide chain, and therefore
disregard the stabilization due to interactions of residues
that are far away in sequence. This is probably the most
important reason for the moderate predictive power of
these methods.

In this work we introduce the concept of secondary-
structure formation into the random heteropolymer
model used previously [7,8] to study protein behavior.
Our representation of secondary structure is introduced
with a set of two “internal states” that the monomers
can select. The criterion for occupation of these states
is thermodynamic, i.e., the states are modeled by ther-
modynamic and not quenched variables. As we explain
in Secs. II and VII, this representation gives to the sec-
ondary structure an energetic rather than a geometric
significance. In these sections we explain though how a
geometric interpretation of the secondary structure thus
modeled can be achieved. We solve this model in the
mean field approximation and we derive a rich phase
diagram. At high temperature the polymer switches
between conformations and secondary structures freely
without any thermodynamic preference for a specific fold
or a secondary-structure pattern. As the temperature
is lowered, the polymer undergoes a ferromagnetic or
spin-glass-like phase transition to a state with stable sec-
ondary structure. At lower temperatures (depending on
the flexibility) the polymer freezes into a particular fold.
The pattern of freezing into a fold is similar as for the
case of simple heteropolymers [7,8,11], i.e., the thermo-
dynamically dominant folds (below the freezing temper-
ature) are completely different.

Our work is organized as follows. In Sec. II we present
the model. In Sec. III we carry out the average over
disorder and we present the order parameters that dif-
ferentiate between the various phases. In Sec. IV we
determine the freezing pattern in the space of folds and
in Sec. V we use this pattern to determine the transition
at the level of secondary structure. The reader who is
not interested in the mathematical details of the calcu-
lations can skip Secs. IV and V. In Sec. VI we present
and analyze the phase diagram. This is the basic result
of our work. Finally, in Sec. VII we discuss our results
and the limits of applicability of the model.

II. THE MODEL

Our purpose is to construct a model that represents
a linear heteropolymer with secondary structure. The

polymer is composed of N monomers that move in space
subject to the constraint of linear arrangement on the
polymer chain. Each monomer is assumed to have an ex-
cluded volume v. The monomers interact with each other
with a potential that depends on their mutal separation.
The secondary structure is introduced into the model as
a property that affects the energy of interaction between
the various monomers, and is modeled by a set of inter-
nal states that the monomers can adopt. These states
could represent the a-helical vs random-coil (or 3-sheet)
monomer conformations observed in protein structures.
Thus our model system is described by the Hamiltonian

1 1
H = —5 ZD,Jé(l‘l - rj)criaj + -2—BZ(S(I', — l‘j)
1#£] i#]
1
+EC4Z O(r; —r;)6(r; —ri). (2.1)
i#j#k

The first term incorporates the heteropolymeric inter-
actions. These interactions depend on two kinds of ther-
modynamic variables, the spatial coordinates {r;} and
the set of internal states {o;} that describe the secondary
structure of the monomers, and a set of quenched disor-
der variables, the interaction strengths D;;. Throughout
this work we will use the following terminology. We will
call configuration a set of the variables {r;,0;}. In con-
trast to this, a set of the r-space coordinates {r;} will
define a fold.

We chose the simplest short-range potential U(r; —
r;j) = 0(r; — r;) for the monomer-monomer interactions.
This form of potential reproduces the essential behavior
of all short-range two-body potentials [18]. The inter-
nal states of the monomers are represented by the set of
variables {o;}. In this work we consider the case where
the variables {o;} take the values £1. This Ising-like
representation corresponds to the situation where the
monomers can exist in two distinct secondary-structure
states.

The quenched disorder variables D;; are assumed to
be independent random variables that follow a Gaussian
distribution

(D;j-Do)?
—-—————21D2 6_4%’&",
V 4T

with mean Dy and variance D. The parameter Dy con-
trols the way the various secondary-structure elements
interact with each other. For example, if Dy = 0 any
monomer ¢ will have on the average the same number of
positive and negative interaction strengths D;; with the
other monomers j # %, and it will stabilize on the aver-
age an equal number of similar and different secondary-
structure states, respectively. On the other hand, a mean
Do > 0 will lead to a larger number of positive param-
eters D;;. In that case, a monomer will stabilize on the
average neighboring monomers with similar secondary
structure. In the following we will restrict ourselves to
the case Dy > 0.

The last two terms of the above Hamiltonian describe
a background of homopolymeric interactions. The sec-
ond term guarantees that the polymer will collapse to a

P(D;j) = (2.2)
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globular state, whereas the third term (for C > 0) pre-
vents the monomers from collapsing to the same point.
We will assume that C > 0 in the following.
The polymeric nature of the system is taken into ac-
count by including a term of the form
2
i) ) (2.3)

in the polymer partition function. This term corresponds
to the interactions between adjacent monomers, and ex-
presses the fact that the average distance (Kuhn length)
between adjacent monomers in the chain is equal to a.
Summarizing the characteristics of this model, our
Hamiltonian corresponds to a system with heteropoly-
meric interactions superimposed on a background of ho-
mopolymeric interactions. Any two monomers interact
when they are in contact, with an interaction strength
that depends not only on the particular pair of monomers
(i.e., on the sequence), but also on a set of internal states
that characterize the monomers. One should note that
a particular fold is defined merely by the set of coordi-
nates {r;}. Thus the same fold can be associated with
different sets of the {o;} variables, or in other words with
different “secondary structures.” This is a consequence
of the fact that the secondary structure, as introduced
into this model, is a property that affects the energy of a
configuration, but it is not directly related to its partic-
ular geometry. It is easy to understand the concept of a
particular fold with more than one secondary structure,
and also to attribute a geometric nature to this model
of secondary structure, if one considers that any fold is
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defined up to the characteristic scale v of the monomer
specific volume. The {o;} variables could then account
for additional details, such as the particular orientations
of monomers that are in contact.

III. AVERAGE OVER DISORDER

The partition function for the Hamiltonian of Eq. (2.1)
is given by the relation

Z /Hdr,Hg(r,_,.l —r;) e PHEADG]),

{o:} t

Z({Dy}) =

(3.1)

Our objective is to calculate the free energy F({D;;}) =
—KTInZ({D;;}). To achieve this, we calculate instead
the averaged over disorder (i.e., over sequences) free en-
ergy F = (—KTInZ({D;;}))av, Where ()a, denotes the
average over the disorder variables D;; with the weight
given by Eq. (2.2). Since the free energy is a self-
averaging quantity [9], F({D;;}) = F in the thermody-
namic limit. To calculate F we use the replica trick [9],
which calls for averaging the nth moment of the partition
function:

F = im ZUDii P )av — 1

n—0 n

(3.2)

To carry out the average (Z({D;;})")av We introduce n
replicas of the system and perform the integration over
all sequences {D;;}:

/ [I4D:P(Dy;)
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In arriving at Eq. (3.3) we ignored some additive constants and we denoted with B the quantity B =

(BD)?/4.
In Eq. (3.3) there appear three order parameters:
“secondary-structure” density no(R) = 3, 6(rg

(3.3)
(B-C)/2-
(1) The polymer density po(R) = Y :0(r& — R) , (2) The

— R)og, and (3) the overlap parameter ¥ g(R1,R2) = E o(rg —

R1)6(r? — Ry) 0f0®. The order parameters 74(R) and ¥,3(R1, R2) satisfy the following normalization conditions:
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[ R (®) = Yo,
/ dR1dR; Uap(R1,Rp) = Y 0f0?f

Thus 74(R) provides information about the net secondary structure of the configuration a, whereas ¥,5(R1,R;) is
an indicator of the similarity in secondary structure of the two configurations o and 3. As we will show in Sec. V|,
¥,5(R1,R2) is also related to the similarity of the folds that correspond to a and 8.

In terms of these order parameters the average (Z({D;;})")av can be expressed as

(ZED N = Y / ] éesatot, - He{-0BY JETAL
{aa}
Zde PL(R) + 5D)2 zde dR, U2 5(R) + ﬁDOZ/dR (3.4)

a<pf

The spatial density p,(R) can be determined by minimizing the free energy with respect to p,(R), subject to the
constraint [ dR p,(R) = N [8,19]. This minimization leads to the following value for the density:

3,C-B (BD)?

pa(R) = = (“5—+ 55 )- (3.5)

In the following we will assume that the polymer has a constant density with value given from Eq. (3.5) and we will

designate this value with p. This assumption is justified, since in the globular state the density-density fluctuations

vanish in the thermodynamic limit [19]. Using the constraint of constant density, we will omit from the following
calculations the homopolymeric part of the Hamiltonian that depends on p.

To proceed further we perform a Hubbard-Stratonovitch transformation of Eq. (3.4) with respect to the order

parameters 7, (R) and ¥,5(R1, R2).

—@Zfdﬂmi(ﬂ) ‘@’?‘ﬁZfdndez‘P?.g(Rl,Rz)
Z(D}) e = [Dma(®)e @ [Peas®iRe =
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{ef}

,BD)2 Z / dR;dR, ‘paﬁ(Rl’ R;)¥ap(Ra, Rz)} o
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This transformation introduces the auxiliary fields m,(R) and @o5(R1,R2). It is easy to check, with the help of Eq.
(3.6), that these fields satisfy the saddle-point equations:

'I‘rna(R)eL[waB!mﬂ} _
ma(R) = 111.-—>0 r_ﬁ‘eL[ﬁPuB:ma] = <7)a(R)>a (37)

. Tr¥,5(Ry,Ry)elleanmal
¢ap(R1, Rz) = lim "TMIL[M,,,Q] = (¥ap(Ry1, Ra)), (3.8)

where Tr denotes the operation Tr= . drog(rd,, —r$ «y and L denotes the function
i, i 9\Tiy1 3 {0}

L[‘Paﬁ’ma] = ﬂDOZ/dRma )na(R) + (ﬂD Z /dedRZ ‘Paﬁ(RlaRZ)‘I’aﬁ(RlvRZ) (3~9)

a<f

As Egs. (3.7) and (3.8) demonstrate, to solve the problem it is sufficient to evaluate the fields og(R1,Rz2) and
mq(R). We thus need to perform the Tr that appears in Eq. (3.6). This will be the subject of the next two sections.

IV. PATTERN OF FREEZING IN THE SPACE OF FOLDS

We will first investigate the (thermodynamically important) overlap of the various configurations with respect to
their spatial coordinates {r&*}. To achieve this we expand in Eq. (3.6) the exponential that contains the fields 74(R)
and ¥,5(R1, R2), substitute the explicit form of n,(R) and ¥,5(R;1,R;), and perform the summation over the {o}
variables. We then get for the terms up to O(p%z, m3)
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where {a, 3, ...} denotes summation over distinct indices.
The integrals of the terms inside the braces { } are over
the variables {R;} that appear in the respective inte-
grands. In Eq. (4.1) we denoted with Q.s...(R1,Ro,...)
the variables

Qap--(R1,Ry,...) = zé(r? —Ry)6(rP —Ry)---.

(4.2)

These variables are order parameters that have been used
in previous studies of the simple heteropolymer [8,20] and
the two-letter code [7,11], and they appear naturally in
our problem after the summation over the {o;} variables
has been carried out.

The variables Qqg...(R1,R3,...) incorporate informa-
tion about the similarity in {r} space of the replicas
a,f,.... To see this, it suffices to consider (as an exam-
ple) the overlap parameter gog, defined as [8]

too = 3 5805 ) = 1 [ R QR B).

The parameter g, is related to the two-replica order pa-
rameter Qog(R1, R2) through the above equation. Thus,
if Qap(R1,R3) is known, gog can be directly evaluated.
It is straightforward to check that gog = 0 or 1 if the
replicas a and (3 are, respectively, completely different
or identical, and that it has an intermediate value in the
case that a, 3 have some degree of similarity.

The overlap between replicas corresponds to the over-
lap between pure states [9,21]. In our case, a pure state is
characterized by a set of conformations in the {r} space
and a set of conformations of the {o;} variables. The
variables Qqg...(R1,R3,...) reveal the extent to which a
set of pure states are similar in the {r} space.

As it follows directly from Eq. (4.2), the order param-
eters Qug...(R1,Ra,...) satisfy the normalization condi-
tions:
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/ddeRa -+ Qap..(R1,Ra,Rs,...) = pa(Ry),
/ dR1dR2dR;3 - Qup. (R, Ry, Rs,...) = N

In the case that the density p, is constant in space,
the above normalization conditions can be used to show
(7,8,20] that the variables Qqp... depend on their argu-
ments as Qqp..(R2 — R1,R3 — Ry,...) and that they
obey the following scaling condition {7,8,20]:

Qaﬁ-y...(Rl, Rz, R3, .. )

P oW <R2 _Rl, R“’_Rl,...) . (4.3)

afy...

Rd(u 1)

In the above equation we introduced a  characteristic
length scale R associated with the difference between
the positions {R;,R2,R3,...} of the monomers in the

|

replicas {a, 3,7, ...}, respectively. We also denoted with
d the dimensionality of the {r} space and with v the
number of replicas in the definition of Qup,.. The
length scale R defines the extent to which the replicas
{a,B,7,...} repeat each other in the {r} space, and
equivalently the scale up to which pure states are defined.
Thus a pure state (in the {r} space) can be viewed as a
tube of characteristic size R. The function Q( ﬂ)7_ that
appears in Eq. (4.3) is defined [8] so that it satisfies the
normalization condition [ dzdy - - Qf:[;,y__.(m,y, ) =1
Since the variables Qq5...(R1, Rz, .. .) reveal the extent
to which the pure states have similar folds, to determine
the freezing pattern to particular folds we have to deter-
mine the values of Qqg... that maximize (for n < 1) the
free energy. To accomplish this we need to express the
free energy F as a function of Q,g... Our strategy is
the following: Keeping the terms up to O(m2, <piﬁ) and

reexponentiating, Eq. (4.1) becomes

(Z({Di )™ av = P71l /DQaﬂ(R1,Rz) eS1Qas]

~ @223 [ 4R 4R, {1-(8D) Qs (Ri,Ra) b ol g (Ri,Ra)

X/D(paﬁ(Rl,Rz)e a<p

, (4.4)

where exp(—BF1[{ma}]) denotes the contribution from the {m,} integrations up to terms of order O(m?). In Eq.
(4.4) we switched integration variables from {r} to {Q.s} and we denoted with S[{Qqs}] the quantity

S[{Qaﬁ}

o f] [artotets - x0)3 (Qaﬁml,nz) — 387 — R)o(ef

- R2)) . (4.5)

It is clear that expS is the number of folds in the n-replica {r} space that correspond to two-replica overlaps equal
to Qop. Thus S is the {r}-space configurational entropy when each replica is choosing spatial folds from a tube of
diameter R, with R the characteristic scale of Qo3. When R — oo this tube extends over all space, i.e., each replica
is allowed to sample all possible folds (with density p). In the opposite limit, when R — v!/3 each replica samples
folds that differ only at scales smaller than the “resolution” of our model v'/3

The integral over the variables {¢os} in Eq. (4.4) is Gaussian to this order and can be performed exactly, leading

to the result

(Z{Di})")ay = e~ PT1llma)] / DQap(R1, Ry)eSQ4! exP{

— e~ BF1[{mal] /'DQaﬁ(Rl,Rz)exp{S[Qaﬁ]

In arriving at the rightmost term of Eq. (4.6) we omitted
some constants and we expanded the logarithm appear-
ing in the second term. The higher-order terms that ap-
pear in the expansion of the right-hand side of Eq. (4.6)
should be combined with the higher-order contributions
from the integration of the terms of Eq. (4.1), that were
omitted in arriving at Eq. (4.4), to evaluate correctly the
free energy F. However, all these terms do not affect the
freezing pattern into specific folds, as we will show in the
Appendix. Therefore to determine the freezing pattern
(that is, the form of Q,g5) we can disregard these terms

_z Z /dedRz In[1 — (8D) Qaﬁ(RlaRZ)]}

a<ﬁ

BOES” [ Q2R Re) + 0((6D) k) | (45)

a<f

[
for now.

In Eq. (4.6) the free energy F has been expressed as
a function of the order parameters Q3. A subsequent
maximization of F with respect to Q,s will determine
the possible overlaps between the folds of different repli-
cas. To proceed, it is convenient to maximize the free
energy with respect to the characteristic length scale R
instead of Qug, as it was done in [7,8,11,20]. The entropy
S has been shown in [8] to scale as ~ —1/R2. This is in-
tuitively expected, since this scaling law corresponds to
the configurational entropy of a polymer in a tube with
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diameter R [22]. On the other hand, the O(Q25) term

in Eq. (4.6) scales as ~ 1/R3, as it follows with the help
of Eq. (4.3). Thus a maximization (for n < 1) of the
free energy with respect to R leads to the values R = oo
and R = v!/3. The former value corresponds to the case
where Qo = 0, i.e., the replicas (the pure states) are as-
sociated with completely different folds. The latter value
corresponds to the case where the replicas repeat them-
selves inside a tube of microscopic scale, i.e., the pure
states are identical frozen folds. The resulting free en-
ergy is depicted as a function of 1/R in Fig. 1.

The contribution of higher-order terms can be calcu-
lated in a similar way (by evaluating moments of the
above Gaussian integral). As an example, we present the
calculation for the other terms of Eq. (4.1) in the Ap-
pendix. All these terms result in contributions to the
free energy that scale as higher (> 3) powers of 1/R.
These terms affect the detailed appearance of the free
energy F at microscopic scales, but they do not change
the qualitative shape of the free energy curve depicted
in Fig. 1. The values of F at R = o0 and R — v'/3
will still be separated by a free energy barrier, signifying
that the freezing pattern corresponds to either R — oo
or R — v'/3,

The above freezing pattern suggests that the replicas
can be divided into groups. Each group consists of repli-

]

Qaﬁ‘ym(RlaRh Rs,.. ) = { 0

p6(R; — R3)0(R; — Rg)--- for , 8,7, - in the same group

3115

~1/3

\% scale 1/R

free energy

FIG. 1. Free energy F as a function of the {r}-space length
scale 1/R, plotted for the case n < 1. The free energy is
maximized for R — oo or R = v'/3. In the former case a
replica samples the entire {r} space (no freezing), whereas
in the latter case it is localized to the microscopic scale v'/3
(freezing).

cas with identical folds, and the replicas that belong to
different groups correspond to completely different folds.
The form of the order parameters Q,g-... is given by the
relation

otherwise . (4.7)

The 4 functions that appear in Eq. (4.7) are more precisely Dirac §-function-like functions that are nonzero when
their argument is of the order of v/3 [e.g., they could be defined as §(z) = v~ for = < v'/3].

The Gaussian integral of Eq. (4.4) diverges in the case (3D)2Qqs(R1,R2) > 1. This divergence signals the existence
of a phase transition that causes the variables {¢og} to acquire a fixed value. As we will demonstrate in the next
section, this phase transition is associated with the behavior of both the {r{*} and {o{*} variables. One can see with
the help of the above condition that the phase transition in {¢as} cannot occur as long as the freezing in the {r}
space has not taken place, since in this case Qqg(R1,R2) = N/V2? — 0 [8] in the thermodynamic limit.

V. FREEZING AT THE LEVEL OF SECONDARY STRUCTURE

As we established in the preceding section, the variables Q,p... can have two possible values given by Eq. (4.7).
Thus we can arrange Q,g... in a Parisi-type matrix with these two values separated by a breakpoint z,. This has
the meaning that the n replicas are divided into n/z¢ groups, with z replicas of identical {r{} coordinates in each
group.

Since we solve the problem at the level of mean field, we will set mq(R) =const and pag(R1,R3) = pos(R1 —Ra3).
Substituting the form of Qg into Eq. (4.1), we find

(@D} Yow = %951 [ D [ Dias(R) exp{‘ﬂDz—"V Somi- B Y [motm)

a<f a<f
+N Z ln[ Z exp((,BD)2 Z ©ap(v'/?) 0405 + BDo Z maaa)] }, (5.1)
g {oa,aEg} a<pBeg a€g

where V is the volume of the system and {g} denotes
summation over all groups g of different folds. Equation
(5.1) can be immediately derived from Eq. (3.6). To see
this it is sufficient to notice via Eq. (3.8) that the sep-

aration of replicas into groups of different folds and the
mean field functional form ¢.g(R1 — R;) are equivalent
to setting ¥o5(R1 —R2) = pA(R; —R3) 3, 080P /N for
a, 3 in different folds and 0 otherwise. In Eq. (5.1) we
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denoted with S[Q.g] the entropy that corresponds to the
values of Q.g, as they are given by Eq. (4.7).

A minimization over {@qg} of the exponent in the in-
tegrand of Eq. (5.1) shows that ,g(R) = 0 for o, in
different folds and pag(R) = 0, R > v'/3 for @, 3 in the
same fold. Thus, upon substituting p.g(R) = p/v s
for R < v'/3 and a,f in the same fold, and 0 other-
wise, and rescaling m, — pm, we arrive at the following
expression for the free energy:

.1 K 2 A 2
F=lim IN {Ezm°+§ 2 P
g acg a<fBeg

—In Z eprg[cﬁ'aﬁ,ﬁza]}, (5.2)

{oa,acg}

where the function K| is given by the relation

Ky[a,Papl =X D Popladp+ KD Maba, (5.3)
a<fBeg agg

with kK = 8Dgp and X\ = (8D)2%p/v.

The rescaled variables m, and @.g satisfy the nor-
malization conditions [dRm.(R) = Nm, = N{o,)
and deldRz vap(R1,R2) = Npog = N(0403), where
the average () involves a summation over {o,}, with a
weight function expKy. Then, from the mean field the-
ory of spin glasses [9] we deduce that mq = ((0i)tn),,
and @op = ({0:)2,),,- For the sake of brevity in the fol-
lowing we will drop the tilde sign and denote the rescaled
variables as m, and @qg.

A. Replica symmetric solution inside a folding group

As it is deduced from Eq. (5.1) and the following dis-
cussion, the overlap of {o;} for replicas that correspond
to different folds is zero. This is expected, since these
folds have completely different contacts. For replicas that
belong to the same fold, there might be a range of pa-
rameters for which ¢,g # 0. Thus in terms of all replicas
the nontrivial solution will always be replica-symmetry
breaking. For replicas inside the same folding group one
can seek solutions of p,g that are replica symmetric,
or one can break the replica symmetry in a Parisi-type
scheme. In the first case, if one sets pog = p,Va,B € g
and m, = m, one arrives at the following equation for
the (intensive) free energy:

A A
Bf=—-1n2+ Z(wo— 1)e* + §<p+nm2

——1In —‘/12: /dp e"; cosh™ (BH.s)

——]lv lim = S[Qug),

n—07n

(5.4)

with BHeg = km + /App. The variables ¢ and m are
determined by the following self-consistent equations:

_ Jdp e—P"/2 cosh® (BHeg) tanh(BHes)
B J dpe=?*/2 cosh™ (BH.x) ’

(5.5)

_Jdp e7P"/2 cosh™ (BH.g) tanh?(BH.g)
N J dpe?*/2 cosh™ (BH.s)

(5.6)

Equations (5.5) and (5.6) are different from the replica-
symmetric equations for the Sherrington-Kirkpatrick
(SK) model [9,23], due to the nontrivial dependence of
¢ and m on the parameter zo. In order to determine
Zo one needs a third equation, in addition to Egs. (5.5)
and (5.6). This equation is deduced by maximization of
the free energy F with respect to zo. To perform this
maximization one needs to know the form of the entropy
S[Qap]- This form was derived in [8], where it was shown
that

S[Qap) = N~ (20 — 1) In —.

P e (5.7)
The form of S[Q.s] as given by Eq. (5.7) can be easily
elucidated, if one notices that S[Qqg] is also equal to the
change in the entropy due to the freezing. This holds
because the entropy for the random coil is S = 0 due to
the normalization of the functions g(r;4; —r;). It is easy
to check then that the form of S[Q.g] as given by Eq.
(5.6) corresponds to the above described freezing pattern.
Selecting one replica from a group as a reference, any
monomer of a second replica in the same group has to be
positioned in a space of volume v, due to the localization
scale, instead from the space a3 that would correspond
to a random-coil segment of Kuhn length a. Thus for
any monomer of the second replica the entropy loss is
Inv/a3. Taking into account the fact that there are zo —
1 members in each group (in addition to the reference
replica) and n/zo groups, we arrive at Eq. (5.7).

Using Egs. (5.4) and (5.7), one can maximize the free
energy with respect to zp and deduce the following equa-
tion:

A, 1.1 LB 1

In \/_z_;/dpe cosh™ (BHes) + -

2
4 zg

5 Jdpe~ g cosh™ (BHeg) In cosh(BHes)
[dpe~ % cosh® (BHest)

1 v
=2 In el (5.8)
Equations (5.5), (5.6), and (5.8) determine the vari-
ables m, ¢ and z as functions of the disorder parameters
Dy, D, the temperature T, and the parameter Inv/a3.
This last parameter is related to the flexibility of the
polymer, since as we explained above, a3/v is a measure
of the number of folds lost per monomer upon freezing
into a particular fold. By inspection of Egs. (5.5), (5.6),
and (5.8) it is seen that the values of m and ¢ depend
crucially on the value of the parameter zo (that is, on
the freezing to a particular fold) and vice versa. It is this
interdependence of the secondary-structure and spatial-
folding order parameters that makes this model different
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from the SK model. A numerical solution of the above
equations allows the construction of a phase diagram that
we describe and analyze in Sec. VI.

B. Replica-symmetry breaking inside folds

The form of the free energy F, as given by Egs. (5.2)
and (5.3), is similar (in terms of the {o} variables) to
the SK free energy. As it has been established in var-
ious works [24-26], the correct solution for a specific
range of the parameters T', Dy, and D involves replica-
J

A o
Bf = —xio(zo - 1)ln£§ + Z(l - '\)/; dz p*(z)

A3 Zo

1

In deriving Eq. (5.9) we kept among the O(yp*) terms the
one responsible for the RSB [28,29]. In the case of the SK
model, retaining the other terms has been shown [30] to
lead to a different functional form (i.e., nonlinear) for the
function ¢(z) that maximizes the free energy, but close to
the transition [where p(z) — 0] the two forms coincide.
Parisi [31] has used a coefficient —1/4 for the quartic
term. We will use the —1/12 coefficient that appears in
[28,29)].
Variation of the free energy with respect to ¢ gives

%(1 - — :\6—3{3(% —z)p* + 3/30 dy ©*(y)

T

+0(a) [ dy¢(y)}—53fso3 0 (5.10)

and differentiations with respect to = lead to the result

X —T
p(z) = 2/\0

¢'(xr)=0 or (5.11)
If we assume that there are two breakpoints x; and z,,
with 0 < zg < z1 < z2 < 1 between which ¢(z) assumes
the linear form, i.e.

Ty —To, To<z< T
T — g,
T2 — To,

20p(z) = (5.12)

we find for z; and z,

T, =1xo and :cz=1—-\/(1—-mo)2+§(1—/\). (5.13)

Since zz > =z it follows from Eq. (5.13) that A > 1. The
value A = 1 is critical because for this value it follows that
Z3 = 1 = %o, and the RSB inside each fold disappears.
For A < 1 the solution for ¢ is given by the replica-

dz {(xo — )o@ +ola) [ ayt )+ 20%) [ dy w(y)}—-j—; [ v,

symmetry breaking (RSB) with respect to the variables
¢@ap- This region lies below the de Almeida—Thouless
(AT) line [9,24]. The solution described in Sec. V A in-
volves RSB between different folds, because ¢, = 0 for
a,3 in different folds, whereas o3 # 0 (possibly) for
a,f in the same fold. We can extend the RSB inside
each fold, if we assume in the spirit of Parisi that ¢.g
are functions of a continuous variable z, po3 = ¢(z). In
this case we set p(z) = 0 for © < zo (when n < 0). For
simplicity, we examine the case Dy = 0. The results for
Dy # 0 can be deduced from the Dy = 0 solution at
nonzero field, as it has been explained in [9,27]. Upon
expanding the trace in Eq. (5.2) we find the following
form for the free energy, up to terms of order O(yp*):

(5.9)

I

symmetric (inside each fold) Egs. (5.5) and (5.6). The
critical temperature below which the RSB solutions given
by Eq. (5.12) are correct is Ty, = D+/p/v, as it follows
from the definition of A.

The breakpoint o has to be found by maximization
of the free energy. Using Eq. (5.9) and keeping terms of
order O()A?), we find the following equation for z:

it Q(zz — z0)2.

z2 a3 16)

(5.14)
Equation (5.14) shows that the position of z, depends
(in addition to A) on the flexibility parameter Inv/a®.
Since Inv/a® < 0, for a physically meaningful solution
To > 0 to exist the condition A > 1 must be satisfied.
This is consistent with the allowed values for A that we
arrived at before. For A — 1%, where z3 — zo Eq. (5.14)
is satisfied only if Inv/a® — 0~. In this case, one can
substitute the value of z; from Eq. (5.13) into Eq. (5.14)
and show that zo < 1. Thus for Inv/a® ~ 0~ the freezing
temperature 75 at which zo departs from the value zo =
lis Ty ~ T,;. The value Ty, = Ty, is the mazimum
critical temperature, below which freezing into particular
folds can occur. If Inv/a® < 0, the freezing temperature
T drops considerably below Ti,. This happens because
freezing is opposed by the accompanying loss in entropy.
It is important to note that freezing into a particular
fold is possible only after the {o®} variables are able to
undergo a phase transition. If this were not the case, our
model would represent the unrealistic situation where the
polymer (for a range of temperatures) would freeze into a
definite fold, and the monomers would interconvert freely
between secondary-structure states, with a zero average
secondary structure.

For Ty << T Eq. (5.14) cannot be satisfied. This is
a consequence of the fact that the expansion of Eq. (5.2)
breaks down. This expansion implied that ¢(z) — 0,
which holds only at T — T, (A — 1).

The function ¢(x) is presented in Fig. 2 for the case
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FIG. 2. The function ¢ that maximizes the free energy F
in the RSB inside folds case, plotted for T < Ty < Ti:. The
linear functional form implies that o — 1. For clarity we
plotted zo,z2 away from 1 and ¢ large.

T <Tg < Ty and T — Ti. For z < zo, p(z) = 0.
This holds, because in this case the replicas belong to
different groups (i.e., different folds), and therefore they
are characterized by completely different contacts. Thus
the {o®} overlap for such folds will be zero. The overlap
departs from its zero value for z > =z, and reaches a
maximum value that depends on temperature. For 7' —
0 this value is ¢ — 1 [9,32].

In the case zo = 1 (i.e., for T > T§) the func-
tion p(z) = 0. This means that the spin-glass transi-
tion can be observed (in terms of the order parameter
¢) only if freezing to a few (thermodynamically domi-
nant) folds has occurred. On the other hand, we showed
that the maximum critical temperature below which ¢
can be different from zero is Ti;. This means that the
variables {o®} can undergo a spin-glass transition for
T < Ti;. This transition does not show up in terms of
the ¢ variables for Ty < T < Ti., because in this tem-
perature range there exists a very large number of ther-
modynamically important folds with zero overlap. Since
=3 a,8 WaWg Pap With w, the thermodynamic weight
of the pure state a, it follows that ¢ = 0 if freezing to
a few (thermodynamically dominant) folds has not oc-
curred.

For Dy # 0 an analysis by Toulouse for the SK model
[9,27] has shown that m departs from the value m = 0
for Dy > D/ V/pv. We discuss this case in more detail in
the next section.

VI. PHASE DIAGRAM

Using the results of the preceding section we can con-
struct the phase diagram for the random heteropolymer
with dynamical variables o; = £1. This diagram depends
on the homopolymeric parameters B, C, the disorder pa-
rameters Dy, D, the temperature 7', and the flexibility
parameter Inv/a3. We will assume that the parameters
B and C are chosen so that the polymer will exist in
a globular phase [i.e., p as given by Eq. (3.6) satisfies
p > 0]. Then, it is convenient to fix Inv/a® at a nontrivial
value (# 0) and construct the phase diagram as a func-
tion of the parameters Do/[D+/1/(pv)] and T/(D+/p/v)-

The phase diagram derived in this way is presented
in Fig. 3. In this figure we associated the parameters

Do/[D+/1/(pv)] and T/(D+/p/v) with the z and y axis,

respectively. In this way the comparison with the SK
phase diagram can be directly made. The parameter
Inv/a® can be associated with a third direction (i.e., ver-
tical to the plane). Having fixed Inv/a® we then look
at a particular slice of the three-dimensional (3D) phase
diagram.

The various phases are defined by the values of m, ¢,
and zo. Note that with m and ¢ we refer to the rescaled
variables, as these were defined in Sec. V. The values
of these variables can be determined either by assuming
that inside each fold ¢ is replica symmetric and using
Egs. (5.5), (5.6), and (5.8), or by assuming that ¢ obeys
RSB inside each fold. We will choose the latter solution
for the region below the AT line. As it has been demon-
strated previously for the SK model [24-26], in this re-
gion a RSB solution lowers the free energy. Our o = +1

Disordered Globule
Ordered Globule

(T/D)(v/p)12

. Ordered Frozen

SG Frozen SG—Orderéd Frozen

(Dy/D)(pv) "2

FIG. 3. Phase diagram for a heteropolymer with secondary
structure. The term globule refers to a phase in which the
polymer interconverts between folds and the term frozen to
a phase with a few [of order O(1)] folds. In the disorderd
globule phase the polymer alternates between folds and the
monomers switch freely between secondary-structure states,
without any thermodynamic preference for a specific fold or
secondary-structure motif. In the ordered globule phase the
polymer has a predominating secondary structure, and in
the ordered frozen phase the polymer has a unique native
structure and a predominating secondary structure. In these
two ordered phases any monomer spends most of the time
in the predominating state, and it switches between states
due to thermal fluctuations. In the SG phases the thermo-
dynamic preference for a secondary-structure state changes
from monomer to monomer, with both states observed along
a fold. In the SG-ordered frozen phase one state is in excess,
whereas in the SG frozen phase both states are present to the
same extent. In the SG globule phase the polymer intercon-
verts between folds, with a secondary structure that changes
in a fold-dependent manner. The folding line (below which
freezing occurs) is depicted as short-dashed inside and con-
tinuous outside the SG region. The long-dashed line is the
AT line. The secondary-structure-related order parameter ¢
assumes replica-symmetric solutions (for the replicas in the
same folding group) above the AT line.
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heteropolymer is related to the SK model, as is apparent
from the above analysis. In Fig. 3 we plotted the AT
line as a long-dashed line. The AT line was determined
numerically by solving Egs. (5.5) and (5.6) with o = 0
(i.e., the ordinary SK equations). Above the AT line we
solved Egs. (5.5), (5.6), (5.8) numerically as follows We
set £o = 1 and we used Egs. (5.5) and (5.6) to determine
¢ and m. The set of ¢, m that satisfied at the same
time Eq. (5.8) for o = 1, and for an (arbitrary) value of
Inv/a® (= —0.16 in Fig. 3), defines a folding line. Below
this folding line ¢ < 1 and the system can freeze into a
small number of thermodynamically dominant folds.

To proceed with analyzing the phase diagram, we note
that m = ((0:)tn),, and @ = ((0:)Z,)av, as we explained
in Sec. VA. As it is seen in Fig. 3, for T > D+/p/v
and T > Dgp (located above the AT line and the
paramagnetic line T = Dgp) the only possible values
are ¢ = 0,m = 0. For these values Eq. (5.8) can-
not be satisfied (there is no zy < 1) and the system
is a globule without a stable native structure. Since
¢ =0~ (0;)¢n = 0, the monomers interchange freely be-
tween secondary-structure states with no net preference.
In Fig. 3 we designated this phase as a disordered globule.
For Do > [D+/1/(pv)], as the temperature drops below
T = Dgp the system undergoes first a ferromagnetic tran-
sition with m # 0. From the relation ¢ = ((0;)2,),, it
follows that ¢ # 0 as well. This ferromagnetic region ex-
tends down to the AT line. Using Egs. (5.5), (5.6), and
(5.8), one can determine a set of values ¢, m that define
a folding line zo = 1. The ferromagnetic phase enclosed
between the paramagnetic line ' = Dgp, the AT line, and
the folding line corresponds to a globule with no native
structure, but with a net secondary structure (mostly +1
or —1). This is depicted in Fig. 3 as the ordered globule
phase. Note that the nonzero value for the rescaled vari-
able ¢ merely indicates the ferromagnetic transition in
the {o} variables. Strictly speaking, the rescaled variable
@ is defined only for zo < 1, i.e., below the folding line.
The original order parameter po3(R) = (To5(R)) =0
Va, B in this region, because any replicas a, 3 belong to
different folds. Below this phase there is a region en-
closed between the folding line and the AT line. This
region corresponds to an ordered frozen phase where the
system has a stable native fold and a prevailing secondary
structure.

For Dy < [D4/1/(pv)] and below the AT line the
replica symmetry inside folds is broken. The folding line
cannot be calculated analytically away from the temper-
ature T = Dy/p/v. For this reason we drew it schemat-
ically with a short-dashed line. In doing so we assumed
that the folding line extends in a continuous manner be-
low the AT line. This is justified by the fact that the
transition of the ¢ variables along the AT line has to be
continuous by analogy with the SK model. If the folding
line were discontinuous, this would result to a jump in .
The region that lies below the folding line, and is enclosed
between the folding line, the AT line, and the vertical line
Do/[D+/1/(pv)] = 1 corresponds to a phase with a native
structure and a ferromagnetic secondary structure with
broken symmetry [spin-glass- (SG) ordered frozen phase].
This means that the various monomers have a net prefer-
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ence for a particular state (+1 or —1), but this preference
(unlike the ferromagnetic case) changes from monomer to
monomer. If one sums over all monomers (this is equiv-
alent to performing the average ()av), one will find that
a particular state is prevailing. Thus the system will be
in a native state with both secondary structural motifs
coexisting, but with one of them predominating.

In the region T < D+/p/v and Do/[D+/1/(pv)] < 1
the RSB solution gives ¢ # 0 (below the folding line)
and m = 0. The folding line depends on ¢ and m. Since
m stays constant (m = 0) in this region [27], the folding
line is horizontal and equal to the value that it has at
Dy = 0. In this region and below the folding line the
system has a native structure. From the above values of
¢ and m it follows that (g;)en # 0 but ((0i)tn),, = 0.
Thus the system has an equal amount of both kinds of
secondary structure (spin-glass frozen phase).

In the region that lies below the AT line and above the
folding line the system can interchange between many
folds. As we explained in Sec. V B, the existence of many
different, thermodynamically dominant folds causes the
variable ¢ to have a zero value, even though the {o}
variables can freeze in a spin-glass phase for T < D4/p/v.
Our analysis in Sec. VB was carried out for the case
Dy = 0, but the same result holds for Dy < [D4/1/(pv)]-

For Dy > [D4/1/(pv)] the order parameter m > 0 [27],
and thus ¢ > 0 as well. Since (in principle) the {o}
variables can freeze in a spin-glass phase for T < D4/p/v,
the thermal average of {0’} for every residue will depend
on the local contacts (i.e., on the particular fold). Thus,
as the system interconverts between folds, the secondary
structure changes in a manner that depends on each fold.
We designated this phase as a spin-glass globule.

VII. DISCUSSION AND CONCLUSIONS

In this work we investigated a model of a heteropoly-
mer with secondary structure. We solved the model at
the level of mean field theory and we determined a va-
riety of phases. The stability of these phases depends
on the temperature 7', the heterogeneity of interactions
expressed by the parameter D, the mean value of inter-
actions Dy, and the polymer flexibility Inv/a®. At a high
temperature the polymer is predicted to exist in a disor-
dered globule state, interchanging freely between different
folds and secondary-structure states. As the tempera-
ture is lowered (or equivalently the interaction param-
eters D, Dy become larger) the polymer undergoes first
a phase transition that leads to stable secondary struc-
ture, and then a transition to a frozen fold phase with a
few [of order O(1)] thermodynamically dominant folds.
The secondary-structure transition can be ferromagnetic
or spin-glass-like, depending on the relative strength of
the parameters D and Dy. In the former case there is a
single preferred secondary-structure state throughout the
polymer, whereas in the second case the dependence for a
secondary-structure state depends on the monomer, with
both states present. The transition to the frozen fold
phase is governed by the flexibility parameter Inv/a3.
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The heteropolymeric nature of the model was repre-
sented by a set of quenched disorder variables D;; that
obeyed a Gaussian distribution. This representation, re-
ferred to as the independent interaction model [11], im-
plies that the interaction between a pair of residues de-
pends on the particular pair. In an alternative represen-
tation, one can model the polymer sequence by a set of
quenched random variables ;. In that case, the interac-
tion strength between residues ¢ and j in contact will be
0;0;. In this representation the interaction depends on
the individual character of the residues, and the interac-
tion strengths o;0; are correlated. This has been referred
to previously as the sequence model and has been solved
for the case of the two-letter code [11].

The secondary structure was modeled by a set of inter-
nal states that the monomers occupied. As we discussed
in Sec. II, this representation does not relate explicitly
the secondary structure to the detailed geometry of a
fold. It is possible to attribute a geometric nature to this
model of secondary structure, if one considers that a fold
is defined up to the characteristic scale v associated with
the monomer specific volume. The energy of a fold de-
pends then on (a) the contacts made between residues up
to this scale, and (b) on some additional characteristics of
the residues in contact (their internal states), that might
have to do with their relative orientation, backbone di-
hedral angles, etc. An important feature of the above
model is that formation of a stable secondary structure
is energetically favored and entropically hindered. Thus
this model captures an essential property of the forma-
tion of secondary structure observed in nature.

The interactions between residues were considered to
be short range in space, but long range in sequence (that
is, any two residues on the sequence could interact, pro-
vided they were in contact). This means that in our
model the interaction between two residues is affected by
their secondary-structure state no matter how far away
they are in sequence. One could argue that this assump-
tion is more realistic for the case of (3-sheet formation,
whereas a-helical segments are stabilized by interactions
between neighboring in sequence residues. It is a well
established fact though [12,34,35] that helices are signifi-
cantly stabilized by interactions of nonpolar residues that
are distant in sequence and close in space. Due to this
reason we think that it is not necessary to treat differently
the near neighbor (in sequence) from the long-range in-
teractions, when trying to reproduce some basic features
of secondary structure.

The stabilization of secondary-structure elements de-
pends on the mean interaction Dy. For a positive value
of Dy a residue in a certain state will interact favorably
with contact residues in the same state. On the other
hand, if Dy = 0 a residue will stabilize on the average an
equal number of contact residues with the same and with
opposite secondary structure. It is possible that the vari-
ability in terms of secondary-structure motifs observed in
different proteins [36] (i.e., all « helical or all 3 sheet, as
opposed to mixed a-3) is caused in a similar way through
stabilization of a particular secondary-structure motif by
(respectively) the same or the opposite motif.

As it follows from the solution, in this model the poly-

mer is able to freeze into particular folds after the residues
adopt stable secondary-structure states. Each fold is as-
sociated with a free energy level, because it corresponds
to a set of conformations of the {o;} variables. Since
the folds (in the low free energy part of the spectrum)
are completely different of each other, these free energy
levels are independent of each other. This is similar to
what was observed in previous works for the random het-
eropolymer [7,8] and the random energy model [10]. The
overlap of {o;} variables depends on the temperature.
This means that the free energy levels will change with
temperature. Thus in this model it is possible that the
ground state configuration (as a function of both the spa-
tial coordinates {r;} and the {o;} variables) changes with
temperature.

It is interesting to compare this model with other mod-
els of protein folding, which encapsulate the concept of
minimal frustration [5,6]. This concept states that the
secondary-structure propensities are not in conflict with
the native tertiary structure. In our model, specific folds
become thermodynamically important when the mean
value of the interaction strength Dy > 0. This means
that the residue contacts (i.e., the native fold) affect
the secondary-structure states, and the energy is low-
ered on the average when the residues adopt the correct
secondary-structure states (for a particular fold). Thus
our model is in accordance with minimal frustration.
However, in our case the individual interaction strengths
D;; obey a probability distribution that is nonzero for
D;;j < 0. Thus a residue will have both positive and neg-
ative interaction strengths with its neighboring residues,
leading inevitably to some frustrated secondary-structure
states. This is equivalent to the frustration observed in
the spin-glass systems.

A different model of secondary-structure formation has
been introduced in [33]. In this work the polymer is em-
bedded on a hypercubic lattice. The geometric character-
istics of the secondary structure are taken into account
by modeling the a-helical state as a straight line and
assigning an energetic penalty to turn formation, that
breaks the helix. The model predicts a low temperature
transition to a “frozen” phase in which the helix extends
throughout the entire sequence, with the exception of
forming turns on the surface. In other words, in this
phase the polymer consists of fully stretched paths that
turn on the surface of the lattice (to retain compactness).
A disadvantadge of the model is that it refers to a ho-
mopolymer. Thus this low temperature “frozen” phase
does not really correspond to a unique tertiary structure,
because the helical segments can be rearranged in many
ways, retaining the same compactness and corresponding
to the same energy.

One important question that has to be addressed is
the validity of the mean field theory approach followed
in solving this problem. Our model is in reality a short-
range spin glass, with the additional property that due
to its polymeric nature, the “spins” (i.e., the residues)
are allowed to sample over many different neighboring
contacts. From this point of view each “spin” is able to
feel the influence of many other “spins,” behaving in a
similar manner as in a long-range spin glass.
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The freezing pattern in the space of folds is derived by
a mean field approximation for the variables Q3. This
treatment has been shown to give satisfactory results in
the case of simple heteropolymers [7,8], leading to a REM
picture for the energy spectrum. This picture has been
confirmed in exact enumeration studies of lattice mod-
els with a simple heteropolymer Hamiltonian [37]. The
contribution of fluctuations in the order parameter Q.g
has been examined for the two-letter code in [11]. It has
been shown that the effect of fluctuations is to reduce the
freezing into a particular fold temperature.

The mean field assumption enabled us to relate the
problem with the SK free energy, with order parameters
given by mo = 3, 0%/N and po = ) ; of‘a?/N. The
free energy was found to depend in addition on the order
parameter zo that determines the degree of freezing to a
particular fold. The solution is always replica-symmetry
breaking (below a certain temperature) in terms of the
variables ¢,3, because o5 = 0 always for a, 3 belonging
to different folding groups. Being consistent with the
analogy with the SK model, we chose the RSB solution
for pop inside each folding group below the AT line, and
we determined the o3 pattern using the Parisi ansatz.
According to this pattern, the p,g overlap varies inside
each group from a minimum (0) to a maximum value that
depends on temperature, approaching the limiting value
1 as T — 0 [32]. This means that there are always many
thermodynamically important pure states in terms of the
o; variables.

A considerable amount of work has been oriented to-
wards elucidating the properties of short-range spin-
glass systems. More specifically, it has been argued
with the help of scaling arguments that short-range
spin glasses have ezactly one pair of ground states [38].
The existence of an AT transition for any finite dimen-
sionality spin glasses has also been questioned [38,39].
Short-range spin-glass systems have also been stud-
ied with momentum-space [9,40] and real-space [9,41]
renormalization-group methods and Monte Carlo calcu-
lations [9]. The upper critical dimension, above which
mean field is exact, has been shown [40] to be d, = 6. On
the other hand, real-space renormalization-group (RG)
studies [41] have shown that the phase diagram for a
short-range spin glass with +J interactions on a cubic
lattice (in d = 3) is similar to the predictions of mean
field theory, with paramagnetic, ferromagnetic, antiferro-
magnetic (for +J predominating), and spin-glass phases.
The spin-glass transition temperature for a cubic lat-
tice (d = 3) was found [9,42] to be Ty ~ T}VIF/Z, with
TMF — ;1/2AJ, 2 the coordination number, and AJ
the width of the interaction. Also, the case of dilute
infinite-ranged spin glasses has been investigated in [43].

In this work the spin-spin interactions were strong (of
order unity, as in our model), but each spin interacted
with a fraction p/N of other spins, with p finite. The re-
sulting phase diagram had paramagnetic, ferromagnetic,
spin-glass, and mixed phases.

If the above picture is representative of a heteropoly-
mer with secondary structure, to which region (if any)
of the phase diagram of Fig. 3 do proteins belong? To
answer this question one should keep in mind that pro-
teins are much more complex systems than what this
model implies. For example, the distinction between
secondary-structure “states” is probably not as sharp as
an Ising-like representation dictates. The solvent condi-
tions, or intrinsic preferences of the various residues for a
particular secondary-structure motif, might destroy the
+1 — —1 degeneracy of the {o} variables satisfied in our
model. This would necessitate the introduction of a field
in our Hamiltonian. If we consider the above model as a
first approximation to a protein description, we can ar-
gue that various proteins belong to different regions in
the phase diagram. In nature there are proteins which
are « helical or 3 sheet, or have both secondary struc-
tural motifs. The first two kinds would be represented by
the right part of the phase diagram, where the secondary-
structure formation is described by a ferromagnetic tran-
sition. The third kind would correspond to the spin-glass
region.
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APPENDIX

In this appendix we show that higher-order terms in
the expansion of Eq. (4.1) do not affect the pattern of
freezing in the {r} space. To show this, it suffices to
demonstrate that these terms scale as powers 1/R¥ of
the characteristic scale R, with v > 3. In this case the
entropy term (~ 1/R?) becomes more significant in the
regime R — oo and the free energy F has a barrier be-
tween R = oo (no freezing) and R = v!/3 (freezing in
microscopic scales).

To examine the effect of higher-order terms we have to
perform the integration over the {¢p,3} variables. The
only surviving contributions come from terms that in-
clude even powers of {¢,3}. Equation (4.1) becomes

(ZUD )Y = [ Dl exp{ 222 > [ ammi e}

2

X /Hdr?g(r?+1 —rd) exp{—% E /dedRz In[1 — (5D)2Qaﬁ(R1’R2)]}

a<p



3122

G.Z. ARCHONTIS AND E. I. SHAKHNOVICH 49

{a’ﬂ}
(8D)*
o 2

{,8,7,6}

</‘P§ﬁ(RlaR2)Qaﬁ(R1,R2)/wia(R3,R4)Q—15(R37R4)>

D)8
+(:332) Z </<Piﬁ(R1,R2)¢?37(R2,R3)QQ37(R1,R2,R3)>

{a,8,7}

(ﬂD (ﬁDo)2 Z/m (R) Z

{8}

where we omitted the terms that did not contain the variables Qapry...-

</¢§5(R11R2)Qaﬁ(R1,R2)>+"' }a

(A1)

In Eq. (A1) we denoted with () the averages

Jdoap(R1,Ra)Alpagle” Alpap]

(Alpasl) =

with Afpog] defined as

D
Alpas] = 20
a<pf

After evaluating these averages we get

(Z({Di})")av = / pma(R)eXP{

[ dpap(Ry, Ry)e—Alvasl

Y. [ dRudRa[1 - (BD)*Qap(Ra, Ra)] (R, Ra).

/dR R)}/Hdrg ¥, —rf)

x exp{—-— Z /dR1dR2 In[1 - (BD) Qaﬁ(Rl,Rz)]}

a<p

/ Q,s(R3,Ry)
R:) / 1-(8D)?Q.,s(Rs,R4)

3 (BD)* Qap(R1, R7)
x{ 4 48 Z/ 1— ﬂD 2Qa3(R1,R2)]
Qas(Ri1, R2)
% {Q;J}/ ~ (BD)*Qas (R,
1 (IBD)s Qaﬁ-y(RlaRZa RS)

4 32
{87}

1 (8D)*(8Do)
+§(—‘)TL‘°;/"’

{8}

2 / 1~ (BD)2Qap(R1,R2)] [1 — (BD)2Qay(R1, R3)]

Qap(R1,R2)
Y [ —prasmm * }

(A2)

Upon reexponentiating and expanding the denominators of the various terms, and using the scaling relation (4.3), it
is directly verified that the resulting contributions to the free energy scale as > 3 powers of 1/R.
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